Welcome to the EnMAP-Box Algorithm documentation!¶
Processing Algorithms¶
Accuracy Assessment¶
Classification Performance¶
Assesses the performance of a classification.
Parameters
- Prediction [raster]
- Specify classification raster be evaluated
- Reference [raster]
- Specify reference classification raster (i.e. ground truth).
Outputs
- HTML Report [fileDestination]
Specify output path for HTML report file (.html).
Default: outReport.html
Classifier Fit/Training Performance¶
Assesses the fit performance of a regressor using the training data.
Parameters
- Classifier [file]
- Select path to a classifier file (.pkl).
Outputs
- HTML Report [fileDestination]
Specify output path for HTML report file (.html).
Default: outReport.html
Clustering Performance¶
Assesses the performance of a clusterer.
Parameters
- Prediction [raster]
- Specify clustering raster to be evaluated.
- Reference [raster]
- Specify reference clustering raster (i.e. ground truth).
Outputs
- HTML Report [fileDestination]
Specify output path for HTML report file (.html).
Default: outReport.html
Cross-validated Classifier Performance¶
Assesses the performance of a classifier using n-fold cross-validation.
Parameters
- Classifier [file]
- Select path to a classifier file (.pkl).
- Number of folds [number]
undocumented parameter
Default: 10
Outputs
- HTML Report [fileDestination]
Specify output path for HTML report file (.html).
Default: outReport.html
Cross-validated Regressor Performance¶
Assesses the performance of a regressor using n-fold cross-validation.
Parameters
- Regressor [file]
- Select path to a regressor file (.pkl).
- Number of folds [number]
undocumented parameter
Default: 10
Outputs
- HTML Report [fileDestination]
Specify output path for HTML report file (.html).
Default: outReport.html
Regression Performance¶
Assesses the performance of a regression.
Parameters
- Prediction [raster]
- Specify regression raster to be evaluated.
- Reference [raster]
- Specify reference regression raster (i.e. ground truth).
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Invert Mask [boolean]
Whether or not to invert the selected mask.
Default: 0
Outputs
- HTML Report [fileDestination]
Specify output path for HTML report file (.html).
Default: outReport.html
Regressor Fit/Training Performance¶
Assesses the fit performance of a regressor using the training data.
Parameters
- Regressor [file]
- Select path to a regressor file (.pkl).
Outputs
- HTML Report [fileDestination]
Specify output path for HTML report file (.html).
Default: outReport.html
ROC Curve and AUC Performance¶
Assesses the performance of class fractions in terms of AUC and ROC curves.
Parameters
- Prediction [raster]
- Specify class fraction raster to be evaluated.
- Reference [raster]
- Specify reference classification raster (i.e. ground truth).
Outputs
- HTML Report [fileDestination]
Specify output path for HTML report file (.html).
Default: outReport.html
Auxilliary¶
Classification Statistics¶
This algorithm returns class count statistics. The output will be shown in the log window and can the copied from there accordingly.
Parameters
- Classification [raster]
- Specify input raster.
Create Test Classification Map¶
Create a classification map at 30 m resolution by rasterizing the landcover polygons.
Parameters
Outputs
- Output Classification [rasterDestination]
- Specify output path for classification raster.
Create Test Classifier (RandomForest)¶
Create a fitted RandomForestClassifier using enmap testdata.
Parameters
Outputs
- Output Classifier [fileDestination]
Specifiy output path for the classifier (.pkl). This file can be used for applying the classifier to an image using ‘Classification -> Predict Classification’ and ‘Classification -> Predict ClassFraction’.
Default: outClassifier.pkl
Create Test Clusterer (KMeans)¶
Create a fitted KMeans clusterer using enmap testdata.
Parameters
Outputs
- Output Clusterer [fileDestination]
Specifiy output path for the clusterer (.pkl). This file can be used for applying the clusterer to an image using ‘Clustering -> Predict Clustering’.
Default: outClusterer.pkl
Create Test Fraction Map¶
Create a fraction map at 30 m resolution by rasterizing the landcover polygons.
Parameters
Outputs
- Output Fraction [rasterDestination]
- Specify output path for fraction raster.
Create Test Regressor (RandomForest)¶
Create a fitted RandomForestRegressor using enmap testdata.
Parameters
Outputs
- Output Regressor [fileDestination]
Specifiy output path for the regressor (.pkl). This file can be used for applying the regressor to an image using ‘Regression -> Predict Regression’.
Default: outRegressor.pkl
Create Test Transformer (PCA)¶
Create a fitted PCA transformer using enmap testdata.
Parameters
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outTransformer.pkl
Import ARTMO lookup table¶
Creates a raster and a regression from the profiles and biophysical parameters in the lookup table.
Parameters
- ARTMO lookup table [file]
- undocumented parameter
- Reflectance scale factor [number]
Reflectance scale factor. Keep the default to have the data in the [0, 1]. Use a value of 10000 to scale the data into the [0, 10000] range.
Default: 1.0
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
- Output Regression [rasterDestination]
- Specify output path for regression raster.
Import Library¶
Import Library profiles as single line Raster.
Parameters
- Library [file]
- Select path to an ENVI Spectral Library file (e.g. .sli or .esl).
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Import Library Classification Attribute¶
Import Library classification attribute as single line Classification.
Parameters
- Library [file]
- Select path to an ENVI Spectral Library file (e.g. .sli or .esl).
- Classification Attribute [string]
- Attribute name as specified in the library CSV attribute file.
Outputs
- Output Classification [rasterDestination]
- Specify output path for classification raster.
Open Test Maps¶
Opens testdata into current QGIS project (LandCov_BerlinUrbanGradient.shp, HighResolution_BerlinUrbanGradient.bsq, EnMAP_BerlinUrbanGradient.bsq, SpecLib_BerlinUrbanGradient.sli).
Parameters
Outputs
- EnMAP (30m; 177 bands) [rasterDestination]
File name: EnMAP_BerlinUrbanGradient.bsq
Simulated EnMAP data (based on 3.6m HyMap imagery) acquired in August 2009 over south eastern part of Berlin covering an area of 4.32 km^2 (2.4 x 1.8 km). It has a spectral resolution of 177 bands and a spatial resolution of 30m.
- HyMap (3.6m; Blue, Green, Red, NIR bands) [rasterDestination]
File name: HighResolution_BerlinUrbanGradient.bsq
HyMap image acquired in August 2009 over south eastern part of Berlin covering an area of 4.32 km^2 (2.4 x 1.8 km). This dataset was reduced to 4 bands (0.483, 0.558, 0.646 and 0.804 micrometers). The spatial resolution is 3.6m.
- LandCover Layer [vectorDestination]
File name: LandCov_BerlinUrbanGradient.shp
Polygon shapefile containing land cover information on two classification levels. Derived from very high resolution aerial imagery and cadastral datasets.
Level 1 classes: Impervious; Other; Vegetation; Soil
Level 2 classes: Roof; Low vegetation; Other; Pavement; Tree; Soil
- Library as Raster [rasterDestination]
File name: SpecLib_BerlinUrbanGradient.sli
Spectral library with 75 spectra (material level, level 2 and level 3 class information)
Raster Band Statistics¶
This algorithm returns raster band statistics. The output will be shown in the log window and can the copied from there accordingly.
Parameters
- Raster [raster]
- Specify input raster.
- Band [band]
- Specify input raster band.
Set Raster no data value¶
Set the raster no data value. Note that the raster has to be re-opened.
Parameters
- Raster [raster]
- Specify input raster.
- No data value [number]
Value used as the new raster no data value.
Default: 0.0
Unique Values from Raster Band¶
This algorithm returns unique values from a raster band as a list. The output will be shown in the log window and can the copied from there accordingly.
Parameters
- Raster [raster]
- Specify input raster.
- Band [band]
- Specify input raster band.
Unique Values from Vector Attribute¶
This algorithm returns unique values from vector attributes as a list, which is also usable as Class Definition in other algorithms. The output will be shown in the log window and can the copied from there accordingly.
Parameters
- Vector [vector]
- Specify input vector.
- Field [field]
- Specify field of vector layer for which unique values should be derived.
Classification¶
Fit GaussianProcessClassifier¶
Fits Gaussian Process Classifier. See Gaussian Processes for further information.
See the following Cookbook Recipes on how to use classifiers: Classification , Graphical Modeler
Parameters
- Raster [raster]
- Raster with training data features.
- Labels [raster]
- Classification with training data labels.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See GaussianProcessClassifier for information on different parameters.
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF gpc = GaussianProcessClassifier(RBF(), max_iter_predict=1) estimator = make_pipeline(StandardScaler(), gpc)
Outputs
- Output Classifier [fileDestination]
Specifiy output path for the classifier (.pkl). This file can be used for applying the classifier to an image using ‘Classification -> Predict Classification’ and ‘Classification -> Predict ClassFraction’.
Default: outEstimator.pkl
Fit LinearSVC¶
Fits a linear Support Vector Classification. Input data will be scaled and grid search is used for model selection.
See the following Cookbook Recipes on how to use classifiers: Classification , Graphical Modeler
Parameters
- Raster [raster]
- Raster with training data features.
- Labels [raster]
- Classification with training data labels.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. For information on different parameters have a look at LinearSVC. See GridSearchCV for information on grid search and StandardScaler for scaling.
Default:
from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.svm import LinearSVC svc = LinearSVC() param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} tunedSVC = GridSearchCV(cv=3, estimator=svc, scoring='f1_macro', param_grid=param_grid) estimator = make_pipeline(StandardScaler(), tunedSVC)
Outputs
- Output Classifier [fileDestination]
Specifiy output path for the classifier (.pkl). This file can be used for applying the classifier to an image using ‘Classification -> Predict Classification’ and ‘Classification -> Predict ClassFraction’.
Default: outEstimator.pkl
Fit RandomForestClassifier¶
Fits a Random Forest Classifier
See the following Cookbook Recipes on how to use classifiers: Classification , Graphical Modeler
Parameters
- Raster [raster]
- Raster with training data features.
- Labels [raster]
- Classification with training data labels.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See RandomForestClassifier for information on different parameters. If this code is not altered, scikit-learn default settings will be used. ‘Hint: you might want to alter e.g. the n_estimators value (number of trees), as the default is 10. So the line of code might be altered to ‘estimator = RandomForestClassifier(n_estimators=100).’
Default:
from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators=100, oob_score=True)
Outputs
- Output Classifier [fileDestination]
Specifiy output path for the classifier (.pkl). This file can be used for applying the classifier to an image using ‘Classification -> Predict Classification’ and ‘Classification -> Predict ClassFraction’.
Default: outEstimator.pkl
Fit SVC¶
Fits a Support Vector Classification. Input data will be scaled and grid search is used for model selection.
See the following Cookbook Recipes on how to use classifiers: Classification , Graphical Modeler
Parameters
- Raster [raster]
- Raster with training data features.
- Labels [raster]
- Classification with training data labels.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. For information on different parameters have a look at SVC. See GridSearchCV for information on grid search and StandardScaler for scaling.
Default:
from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC svc = SVC(probability=False) param_grid = {'kernel': ['rbf'], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} tunedSVC = GridSearchCV(cv=3, estimator=svc, scoring='f1_macro', param_grid=param_grid) estimator = make_pipeline(StandardScaler(), tunedSVC)
Outputs
- Output Classifier [fileDestination]
Specifiy output path for the classifier (.pkl). This file can be used for applying the classifier to an image using ‘Classification -> Predict Classification’ and ‘Classification -> Predict ClassFraction’.
Default: outEstimator.pkl
Predict Class Probability¶
Applies a classifier to a raster.
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Classifier [file]
- Select path to a classifier file (.pkl).
Outputs
- Probability [rasterDestination]
- Specify output path for fraction raster.
Predict Classification¶
Applies a classifier to a raster.
Used in the Cookbook Recipes: Classification , Graphical Modeler
Parameters
- Raster [raster]
- Select raster file which should be classified.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Classifier [file]
- Select path to a classifier file (.pkl).
Outputs
- Output Classification [rasterDestination]
- Specify output path for classification raster.
Clustering¶
Fit AffinityPropagation¶
Fits a Affinity Propagation clusterer (input data will be scaled).
See the following Cookbook Recipes on how to use clusterers: Clustering
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. For information on different parameters have a look at AffinityPropagation. See StandardScaler for information on scaling
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.cluster import AffinityPropagation clusterer = AffinityPropagation() estimator = make_pipeline(StandardScaler(), clusterer)
Outputs
- Output Clusterer [fileDestination]
Specifiy output path for the clusterer (.pkl). This file can be used for applying the clusterer to an image using ‘Clustering -> Predict Clustering’.
Default: outEstimator.pkl
Fit Birch¶
Fits a Birch clusterer (input data will be scaled).
See the following Cookbook Recipes on how to use clusterers: Clustering
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. For information on different parameters have a look at Birch. See StandardScaler for information on scaling
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch clusterer = Birch() estimator = make_pipeline(StandardScaler(), clusterer)
Outputs
- Output Clusterer [fileDestination]
Specifiy output path for the clusterer (.pkl). This file can be used for applying the clusterer to an image using ‘Clustering -> Predict Clustering’.
Default: outEstimator.pkl
Fit KMeans¶
Fits a KMeans clusterer (input data will be scaled).
See the following Cookbook Recipes on how to use clusterers: Clustering
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. For information on different parameters have a look at KMeans. See StandardScaler for information on scaling
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans clusterer = KMeans() estimator = make_pipeline(StandardScaler(), clusterer)
Outputs
- Output Clusterer [fileDestination]
Specifiy output path for the clusterer (.pkl). This file can be used for applying the clusterer to an image using ‘Clustering -> Predict Clustering’.
Default: outEstimator.pkl
Fit MeanShift¶
Fits a MeanShift clusterer (input data will be scaled).
See the following Cookbook Recipes on how to use clusterers: Clustering
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. For information on different parameters have a look at MeanShift. See StandardScaler for information on scaling
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.cluster import MeanShift clusterer = MeanShift() estimator = make_pipeline(StandardScaler(), clusterer)
Outputs
- Output Clusterer [fileDestination]
Specifiy output path for the clusterer (.pkl). This file can be used for applying the clusterer to an image using ‘Clustering -> Predict Clustering’.
Default: outEstimator.pkl
Predict Clustering¶
Applies a clusterer to a raster.
Used in the Cookbook Recipes: Clustering
Parameters
- Raster [raster]
- Select raster file which should be clustered.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Clusterer [file]
- Select path to a clusterer file (.pkl).
Outputs
- Clustering [rasterDestination]
- Specify output path for classification raster.
Convolution, Morphology and Filtering¶
Spatial Gaussian Gradient Magnitude¶
Applies gaussian_gradient_magnitude filter to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.gaussian_gradient_magnitude for information on different parameters.
Default:
from scipy.ndimage.filters import gaussian_gradient_magnitude function = lambda array: gaussian_gradient_magnitude(array, sigma=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Generic Filter¶
Applies generic_filter to image using a user-specifiable function. This algorithm can perform operations you might know as moving window or focal statistics from some other GIS systems. Mind that depending on the function this algorithms can take some time to process.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. The function argument can take any callable function that expects a 1D array as input and returns a single value. You should alter the preset in the code window and define your own function. See scipy.ndimage.generic_filter for information on different parameters.
Default:
from scipy.ndimage.filters import generic_filter import numpy as np def filter_function(invalues): # do whatever you want to create the output value, e.g. np.nansum # outvalue = np.nansum(invalues) return outvalue function = lambda array: generic_filter(array, function=filter_function, size=3)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Laplace¶
Applies laplace filter to image. See Wikipedia for more information on laplace filtering.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.laplace for information on different parameters.
Default:
from scipy.ndimage.filters import laplace function = lambda array: laplace(array)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Maximum Filter¶
Applies maximum filter to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.maximum for information on different parameters.
Default:
from scipy.ndimage.filters import maximum_filter function = lambda array: maximum_filter(array, size=3)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Median Filter¶
Applies median filter to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.median for information on different parameters.
Default:
from scipy.ndimage.filters import median_filter function = lambda array: median_filter(array, size=3)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Minimum Filter¶
Applies minimum filter to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.minimum for information on different parameters.
Default:
from scipy.ndimage.filters import minimum_filter function = lambda array: minimum_filter(array, size=3)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Percentile Filter¶
Applies percentile filter to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.percentile_filter for information on different parameters.
Default:
from scipy.ndimage.filters import percentile_filter function = lambda array: percentile_filter(array, percentile=50, size=3)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Prewitt¶
Applies prewitt filter to image. See Wikipedia for further information on prewitt operators.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.prewitt for information on different parameters.
Default:
from scipy.ndimage.filters import prewitt function = lambda array: prewitt(array, axis=0)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Sobel¶
Applies sobel filter to image. See Wikipedia for further information on sobel operators
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.sobel for information on different parameters.
Default:
from scipy.ndimage.filters import sobel function = lambda array: sobel(array, axis=0)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution AiryDisk2DKernel¶
Applies AiryDisk2DKernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.AiryDisk2DKernel for information on different parameters.
Default:
from astropy.convolution import AiryDisk2DKernel kernel = AiryDisk2DKernel(radius=5)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution Box2DKernel¶
Applies Box2DKernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.Box2DKernel for information on different parameters.
Default:
from astropy.convolution import Box2DKernel kernel = Box2DKernel(width=5)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution Gaussian2DKernel¶
Applies Gaussian2DKernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.Gaussian2DKernel for information on different parameters.
Default:
from astropy.convolution import Gaussian2DKernel kernel = Gaussian2DKernel(x_stddev=1, y_stddev=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution HighPass2DKernel¶
Applies a 3x3 High-Pass kernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code.
Default:
from astropy.convolution import Kernel2D kernel = Kernel2D(array= [[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution MexicanHat2DKernel¶
Applies MexicanHat2DKernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.MexicanHat2DKernel for information on different parameters.
Default:
from astropy.convolution import MexicanHat2DKernel kernel = MexicanHat2DKernel(width=5)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution Moffat2DKernel¶
Applies Moffat2DKernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.Moffat2DKernel for information on different parameters.
Default:
from astropy.convolution import Moffat2DKernel kernel = Moffat2DKernel(gamma=3, alpha=2)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution Ring2DKernel¶
Applies Ring2DKernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.Ring2DKernel for information on different parameters.
Default:
from astropy.convolution import Ring2DKernel kernel = Ring2DKernel(radius_in=3, width=2)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution Tophat2DKernel¶
Applies Tophat2DKernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.Tophat2DKernel for information on different parameters.
Default:
from astropy.convolution import Tophat2DKernel kernel = Tophat2DKernel(radius=5)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Convolution TrapezoidDisk2DKernel¶
Applies TrapezoidDisk2DKernel to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.TrapezoidDisk2DKernel for information on different parameters.
Default:
from astropy.convolution import TrapezoidDisk2DKernel kernel = TrapezoidDisk2DKernel(radius=3, slope=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Binary Closing¶
Applies binary_closing morphology filter to image. See Wikipedia for general information about closing morphology
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.binary_closing for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import binary_closing, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: binary_closing(array, structure=structure, iterations=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Binary Dilation¶
Applies binary_dilation morphology filter to image. See Wikipedia for general information about dilation morphology
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.binary_dilation for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import binary_dilation, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: binary_dilation(array, structure=structure, iterations=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Binary Erosion¶
Applies binary_erosion morphology filter to image. See Wikipedia for general information about erosion morphology
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.binary_erosion for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import binary_erosion, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: binary_erosion(array, structure=structure, iterations=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Binary Fill Holes¶
Applies binary_fill_holes morphology filter to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.binary_fill_holes for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import binary_fill_holes, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: binary_fill_holes(array, structure=structure)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Binary Opening¶
Applies binary_opening morphology filter to image. See Wikipedia for general information about opening morphology
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.binary_opening for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import binary_opening, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: binary_opening(array, structure=structure, iterations=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Binary Propagation¶
Applies binary_propagation morphology filter to image.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.binary_propagation for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import binary_propagation, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: binary_propagation(array, structure=structure)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Black Tophat¶
Applies black_tophat morphology filter to image. See Wikipedia for more information on top-hat transformation.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.black_tophat for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import black_tophat, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: black_tophat(array, structure=structure)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Gradient¶
Applies morphological_gradient morphology filter to image. See Wikipedia for more information about morphological gradients.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.morphological_gradient for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import morphological_gradient, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: morphological_gradient(array, structure=structure)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Grey Closing¶
Applies grey_closing morphology filter to image. See Wikipedia for general information about closing morphology.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.grey_closing for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import grey_closing, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: grey_closing(array, structure=structure)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Grey Dilation¶
Applies grey_dilation morphology filter to image. See Wikipedia for general information about closing morphology.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.grey_dilation for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import grey_dilation, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: grey_dilation(array, structure=structure)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Grey Erosion¶
Applies grey_erosion morphology filter to image. See Wikipedia for general information about erosion morphology
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.grey_erosion for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import grey_erosion, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: grey_erosion(array, structure=structure)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Grey Opening¶
Applies grey_opening morphology filter to image. See Wikipedia for general information about opening morphology
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.grey_opening for information on different parameters. At first, the structuring element will be defined (scipy.ndimage.generate_binary_structure). By default, its dimensions are always equal to 3. The connectivity parameter defines the type of neighborhood. In order create a bigger structuring element, the parameters in iterate_structure have to be altered (e.g. iterations=2 will increase the size to 5). Alternatively, a custom numpy array can be used as structural element.
Default:
from scipy.ndimage.morphology import grey_opening, generate_binary_structure, iterate_structure structure = generate_binary_structure(rank=2, connectivity=1) structure = iterate_structure(structure=structure, iterations=1) function = lambda array: grey_opening(array, structure=structure)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological Laplace¶
Applies morphological_laplace filter to image. See Wikipedia for more information on laplace filtering.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.morphological_laplace for information on different parameters.
Default:
from scipy.ndimage.morphology import morphological_laplace function = lambda array: morphological_laplace(array, size=(3,3))
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Morphological White Tophat¶
Applies white_tophat morphology filter to image. See Wikipedia for more information on top-hat transformation.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.ndimage.white_tophat for information on different parameters.
Default:
from scipy.ndimage.morphology import white_tophat function = lambda array: white_tophat(array, size=(3,3))
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spectral Convolution Box1DKernel¶
Applies Box1DKernel.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.Box1DKernel for information on different parameters.
Default:
from astropy.convolution import Box1DKernel kernel = Box1DKernel(width=5)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spectral Convolution Gaussian1DKernel¶
Applies Gaussian1DKernel.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.Gaussian1DKernel for information on different parameters.
Default:
from astropy.convolution import Gaussian1DKernel kernel = Gaussian1DKernel(stddev=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spectral Convolution MexicanHat1DKernel¶
Applies MexicanHat1DKernel.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.MexicanHat1DKernel for information on different parameters.
Default:
from astropy.convolution import MexicanHat1DKernel kernel = MexicanHat1DKernel(width=10)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spectral Convolution SavitzkyGolay1DKernel¶
Applies Savitzki Golay Filter.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See scipy.signal.savgol_coeffs for information on different parameters.
Default:
from astropy.convolution import Kernel1D from scipy.signal import savgol_coeffs kernel = Kernel1D(array=savgol_coeffs(window_length=11, polyorder=3, deriv=0))
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spectral Convolution Trapezoid1DKernel¶
Applies Trapezoid1DKernel.
See the following Cookbook Recipes on how to apply filters: Filtering , Generic Filter
Parameters
- Raster [raster]
- Specify input raster.
- Code [string]
Python code. See astropy.convolution.Trapezoid1DKernel for information on different parameters.
Default:
from astropy.convolution import Trapezoid1DKernel kernel = Trapezoid1DKernel(width=5, slope=1)
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Create Raster¶
Classification from Fraction¶
Creates classification from class fraction. Winner class is equal to the class with maximum class fraction.
Parameters
- ClassFraction [raster]
- Specify input raster.
- Minimal overall coverage [number]
Mask out all pixels that have an overall coverage less than the specified value. This controls how edges between labeled and no data regions are treated.
Default: 0.5
- Minimal dominant coverage [number]
Mask out all pixels that have a coverage of the predominant class less than the specified value. This controls pixel purity.
Default: 0.5
Outputs
- Output Classification [rasterDestination]
- Specify output path for classification raster.
Classification from Vector¶
Creates a classification from a vector field with class ids.
Used in the Cookbook Recipes: Classification , Graphical Modeler
Parameters
- Pixel Grid [raster]
- Specify input raster.
- Vector [vector]
- Specify input vector.
- Class id attribute [field]
- Vector field specifying the class ids.
- Minimal overall coverage [number]
- Mask out all pixels that have an overall coverage less than the specified value. This controls how edges between labeled and no data regions are treated.
- Minimal dominant coverage [number]
- Mask out all pixels that have a coverage of the predominant class less than the specified value. This controls pixel purity.
- Oversampling factor [number]
Defines the degree of detail by which the class information given by the vector is rasterized. An oversampling factor of 1 (default) simply rasterizes the vector on the target pixel grid.An oversampling factor of 2 will rasterize the vector on a target pixel grid with resolution twice as fine.An oversampling factor of 3 will rasterize the vector on a target pixel grid with resolution three times as fine, … and so on.
Mind that larger values are always better (more accurate), but depending on the inputs, this process can be quite computationally intensive, when a higher factor than 1 is used.
Default: 1
Outputs
- Output Classification [rasterDestination]
- Specify output path for classification raster.
Fraction from Classification¶
Derive (binarized) class fractions from a classification.
Parameters
- Classification [raster]
- Specify input raster.
Outputs
- Output Fraction [rasterDestination]
- Specify output path for fraction raster.
Fraction from Vector¶
Derives class fraction raster from a vector file with sufficient class information. Note: rasterization of complex multipart vector geometries can be very slow, use “QGIS > Vector > Geometry Tools > Multiparts to Singleparts…” in this case beforehand.
Parameters
- Pixel Grid [raster]
- Specify input raster.
- Vector [vector]
- Specify input vector.
- Class id attribute [field]
- Vector field specifying the class ids.
- Minimal overall coverage [number]
Mask out all pixels that have an overall coverage less than the specified value. This controls how edges between labeled and no data regions are treated.
Default: 0.5
- Oversampling factor [number]
Defines the degree of detail by which the class information given by the vector is rasterized. An oversampling factor of 1 (default) simply rasterizes the vector on the target pixel grid.An oversampling factor of 2 will rasterize the vector on a target pixel grid with resolution twice as fine.An oversampling factor of 3 will rasterize the vector on a target pixel grid with resolution three times as fine, … and so on.
Mind that larger values are always better (more accurate), but depending on the inputs, this process can be quite computationally intensive, when a higher factor than 1 is used.
Default: 5
Outputs
- Output Fraction [rasterDestination]
- Specify output path for fraction raster.
Raster from Vector¶
Converts vector to raster (using gdal rasterize).
Parameters
- Pixel Grid [raster]
- Specify input raster.
- Vector [vector]
- Specify input vector.
- Init Value [number]
Pre-initialization value for the output raster before burning. Note that this value is not marked as the nodata value in the output raster.
Default: 0
- Burn Value [number]
Fixed value to burn into each pixel, which is covered by a feature (point, line or polygon).
Default: 1
- Burn Attribute [field]
- Specify numeric vector field to use as burn values.
- All touched [boolean]
Enables the ALL_TOUCHED rasterization option so that all pixels touched by lines or polygons will be updated, not just those on the line render path, or whose center point is within the polygon.
Default: False
- Filter SQL [string]
Create SQL based feature selection, so that only selected features will be used for burning.
Example: Level_2 = ‘Roof’ will only burn geometries where the Level_2 attribute value is equal to ‘Roof’, others will be ignored. This allows you to subset the vector dataset on-the-fly.
Default: **
- Data Type [enum]
Specify output datatype.
Default: 7
- No Data Value [string]
- Specify output no data value.
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Regression from Vector¶
Creates a regression from a vector field with target values.
Parameters
- Pixel Grid [raster]
- Specify input raster.
- Vector [vector]
- Specify input vector.
- Regression value attribute [field]
- Vector field specifying the regression values.
- No Data Value [string]
- Specify output no data value.
- Minimal overall coverage [number]
- Mask out all pixels that have an overall coverage less than the specified value. This controls how edges between labeled and no data regions are treated.
- Oversampling factor [number]
Defines the degree of detail by which the class information given by the vector is rasterized. An oversampling factor of 1 (default) simply rasterizes the vector on the target pixel grid.An oversampling factor of 2 will rasterize the vector on a target pixel grid with resolution twice as fine.An oversampling factor of 3 will rasterize the vector on a target pixel grid with resolution three times as fine, … and so on.
Mind that larger values are always better (more accurate), but depending on the inputs, this process can be quite computationally intensive, when a higher factor than 1 is used.
Default: 1
Outputs
- Output Regression [rasterDestination]
- Specify output path for regression raster.
Create Sample¶
Extract classification samples from raster and classification¶
Extract classification samples from raster and classification.
Parameters
- Raster [raster]
- Specify input raster.
- Classification [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Invert Mask [boolean]
Whether or not to invert the selected mask.
Default: 0
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
- Output Classification [rasterDestination]
- Specify output path for classification raster.
Extract fraction samples from raster and fraction¶
Extract fraction samples from raster and fraction.
Parameters
- Raster [raster]
- Specify input raster.
- ClassFraction [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Invert Mask [boolean]
Whether or not to invert the selected mask.
Default: 0
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
- Output Fraction [rasterDestination]
- Specify output path for fraction raster.
Extract ordination sample¶
Extract a regression samples where the regression labels are ordinated. See http://dx.doi.org/10.1111/avsc.12115 for details.
Parameters
- Raster [raster]
- Specify input raster.
- Vector [vector]
- Specify input vector.
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
- Output Regression [rasterDestination]
- Specify output path for regression raster.
- Vector for DataPlotly [vectorDestination]
- Specify output path for the vector.
Extract regression samples from raster and regression¶
Extract regression samples from raster and regression.
Parameters
- Raster [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Invert Mask [boolean]
Whether or not to invert the selected mask.
Default: 0
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
- Output Regression [rasterDestination]
- Specify output path for regression raster.
Extract samples from raster and mask¶
Extract samples from raster and mask.
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Invert Mask [boolean]
Whether or not to invert the selected mask.
Default: 0
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Masking¶
Apply Mask to Raster¶
Pixels that are masked out are set to the raster no data value.
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Invert Mask [boolean]
Whether or not to invert the selected mask.
Default: 0
Outputs
- Masked Raster [rasterDestination]
- Specify output path for raster.
Build Mask from Raster¶
Builds a mask from a raster based on user defined values and value ranges.
Parameters
- Raster [raster]
- Specify input raster.
- Foreground values [string]
List of values and ranges that are mapped to True, e.g. [1, 2, 5, range(5, 10)].
Default: []
- Background values [string]
List of values and ranges that are mapped to False, e.g. [-9999, range(-10, 0)].
Default: []
Outputs
- Output Mask [rasterDestination]
- Specify output path for mask raster.
Post-Processing¶
Fraction as RGB Raster¶
Creates a RGB representation from given class fractions. The RGB color of a specific pixel is the weighted mean value of the original class colors, where the weights are given by the corresponding class propability.
Parameters
- ClassFraction [raster]
- Specify input raster.
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Random¶
Random Points from Classification¶
Randomly samples a user defined amount of points/pixels from a classification raster and returns them as a vector dataset.
Parameters
- Classification [raster]
- Specify input raster.
- Number of Points per Class [string]
List of number of points, given as integers or fractions between 0 and 1, to sample from each class. If a scalar is specified, the value is broadcasted to all classes.
Default: 100
Outputs
- Output Vector [vectorDestination]
- Specify output path for the vector.
Random Points from Mask¶
Randomly draws defined number of points from Mask and returns them as vector dataset.
Parameters
- Mask [raster]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Invert Mask [boolean]
Whether or not to invert the selected mask.
Default: 0
- Number of Points [string]
Number of points, given as integer or fraction between 0 and 1, to sample from the mask.
Default: 100
Outputs
- Output Vector [vectorDestination]
- Specify output path for the vector.
Regression¶
Fit GaussianProcessRegressor¶
Fits Gaussian Process Regression. See Gaussian Processes for further information.
See the following Cookbook Recipes on how to use regressors: Regression
Parameters
- Raster [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See GaussianProcessRegressor for information on different parameters.
Default:
from sklearn.pipeline import make_pipeline from sklearn.multioutput import MultiOutputRegressor from sklearn.preprocessing import StandardScaler from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF gpr = GaussianProcessRegressor(RBF()) scaledGPR = make_pipeline(StandardScaler(), gpr) estimator = scaledGPR
Outputs
- Output Regressor [fileDestination]
Specifiy output path for the regressor (.pkl). This file can be used for applying the regressor to an image using ‘Regression -> Predict Regression’.
Default: outEstimator.pkl
Fit KernelRidge¶
Fits a KernelRidge Regression. Click here for additional information.
See the following Cookbook Recipes on how to use regressors: Regression
Parameters
- Raster [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See KernelRidge for information on different parameters. See GridSearchCV for information on grid search and StandardScaler for scaling.
Default:
from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.kernel_ridge import KernelRidge krr = KernelRidge() param_grid = {'kernel': ['rbf'], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'alpha': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} tunedKRR = GridSearchCV(cv=3, estimator=krr, scoring='neg_mean_absolute_error', param_grid=param_grid) scaledAndTunedKRR = make_pipeline(StandardScaler(), tunedKRR) estimator = scaledAndTunedKRR
Outputs
- Output Regressor [fileDestination]
Specifiy output path for the regressor (.pkl). This file can be used for applying the regressor to an image using ‘Regression -> Predict Regression’.
Default: outEstimator.pkl
Fit LinearRegression¶
Fits a Linear Regression.
See the following Cookbook Recipes on how to use regressors: Regression
Parameters
- Raster [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See LinearRegression for information on different parameters. See StandardScaler for information on scaling.
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression linearRegression = LinearRegression() estimator = make_pipeline(StandardScaler(), linearRegression)
Outputs
- Output Regressor [fileDestination]
Specifiy output path for the regressor (.pkl). This file can be used for applying the regressor to an image using ‘Regression -> Predict Regression’.
Default: outEstimator.pkl
Fit LinearSVR¶
Fits a Linear Support Vector Regression.
See the following Cookbook Recipes on how to use regressors: Regression
Parameters
- Raster [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See LinearSVR for information on different parameters. See GridSearchCV for information on grid search and StandardScaler for scaling.
Default:
from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.multioutput import MultiOutputRegressor from sklearn.preprocessing import StandardScaler from sklearn.svm import LinearSVR svr = LinearSVR() param_grid = {'epsilon' : [0.], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} tunedSVR = GridSearchCV(cv=3, estimator=svr, scoring='neg_mean_absolute_error', param_grid=param_grid) scaledAndTunedSVR = make_pipeline(StandardScaler(), tunedSVR) estimator = MultiOutputRegressor(scaledAndTunedSVR)
Outputs
- Output Regressor [fileDestination]
Specifiy output path for the regressor (.pkl). This file can be used for applying the regressor to an image using ‘Regression -> Predict Regression’.
Default: outEstimator.pkl
Fit PLSRegression¶
Fits a Partial Least Squares Regression.
See the following Cookbook Recipes on how to use regressors: Regression
Parameters
- Raster [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See PLSRegression for information on different parameters.
Default:
from sklearn.cross_decomposition import PLSRegression estimator = PLSRegression(n_components=3, scale=True)
Outputs
- Output Regressor [fileDestination]
Specifiy output path for the regressor (.pkl). This file can be used for applying the regressor to an image using ‘Regression -> Predict Regression’.
Default: outEstimator.pkl
Fit RandomForestRegressor¶
Fits a Random Forest Regression.
See the following Cookbook Recipes on how to use regressors: Regression
Parameters
- Raster [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See RandomForestRegressor for information on different parameters.
Default:
from sklearn.ensemble import RandomForestRegressor estimator = RandomForestRegressor(n_estimators=100, oob_score=True)
Outputs
- Output Regressor [fileDestination]
Specifiy output path for the regressor (.pkl). This file can be used for applying the regressor to an image using ‘Regression -> Predict Regression’.
Default: outEstimator.pkl
Fit SVR¶
Fits a Support Vector Regression.
See the following Cookbook Recipes on how to use regressors: Regression
Parameters
- Raster [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See SVR for information on different parameters. See GridSearchCV for information on grid search and StandardScaler for scaling.
Default:
from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.multioutput import MultiOutputRegressor from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR svr = SVR() param_grid = {'epsilon' : [0.], 'kernel' : ['rbf'], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} tunedSVR = GridSearchCV(cv=3, estimator=svr, scoring='neg_mean_absolute_error', param_grid=param_grid) scaledAndTunedSVR = make_pipeline(StandardScaler(), tunedSVR) estimator = MultiOutputRegressor(scaledAndTunedSVR)
Outputs
- Output Regressor [fileDestination]
Specifiy output path for the regressor (.pkl). This file can be used for applying the regressor to an image using ‘Regression -> Predict Regression’.
Default: outEstimator.pkl
Predict Regression¶
Applies a regressor to an raster.
Used in the Cookbook Recipes: Regression
Parameters
- Raster [raster]
- Select raster file which should be regressed.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Regressor [file]
- Select path to a regressor file (.pkl).
Outputs
- Output Regression [rasterDestination]
- Specify output path for regression raster.
Resampling and Subsetting¶
Spatial Resampling (Classification)¶
Resamples a Classification into a target grid.
Parameters
- Pixel Grid [raster]
- Specify input raster.
- Classification [raster]
- Specify input raster.
- Minimal overall coverage [number]
Mask out all pixels that have an overall coverage less than the specified value. This controls how edges between labeled and no data regions are treated.
Default: 0.5
- Minimal dominant coverage [number]
Mask out all pixels that have a coverage of the predominant class less than the specified value. This controls pixel purity.
Default: 0.5
Outputs
- Output Classification [rasterDestination]
- Specify output path for classification raster.
Spatial Resampling (Fraction)¶
Resamples a Fraction into a target grid.
Parameters
- Pixel Grid [raster]
- Specify input raster.
- ClassFraction [raster]
- Specify input raster.
- Minimal overall coverage [number]
Mask out all pixels that have an overall coverage less than the specified value. This controls how edges between labeled and no data regions are treated.
Default: 0.5
Outputs
- Output Fraction [rasterDestination]
- Specify output path for fraction raster.
Spatial Resampling (Mask)¶
Resamples a Mask into a target grid.
Parameters
- Pixel Grid [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Minimal overall coverage [number]
Mask out all pixels that have an overall coverage less than the specified value. This controls how edges between labeled and no data regions are treated.
Default: 0.5
Outputs
- Output Mask [rasterDestination]
- Specify output path for mask raster.
Spatial Resampling (Raster)¶
Resamples a Raster into a target grid.
Parameters
- Pixel Grid [raster]
- Specify input raster.
- Raster [raster]
- Specify input raster.
- Resampling Algorithm [enum]
Specify resampling algorithm.
Default: 0
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Spatial Resampling (Regression)¶
Resamples a Regression into a target grid.
Parameters
- Pixel Grid [raster]
- Specify input raster.
- Regression [raster]
- Specify input raster.
- Minimal overall coverage [number]
Mask out all pixels that have an overall coverage less than the specified value. This controls how edges between labeled and no data regions are treated.
Default: 0.5
Outputs
- Output Regression [rasterDestination]
- Specify output path for regression raster.
Spectral Resampling¶
Spectrally resample a raster.
Parameters
- Raster [raster]
- Select raster file which should be resampled.
- [Options 1] Spectral characteristic from predefined sensor [enum]
- undocumented parameter
- [Option 2] Spectral characteristic from Raster [raster]
- Raster with defined wavelength and fwhm
- [Option 3] Spectral characteristic from response function files. [file]
- Select path to an ENVI Spectral Library file (e.g. .sli or .esl).
- Resampling Algorithm [enum]
undocumented parameter
Default: 0
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Subset Raster Bands¶
Subset raster bands by the given list of band numbers.
Parameters
- Raster [raster]
- Specify input raster.
- Band subset [string]
- List of bands to subset. E.g. 1, 2, -1 will select the first, the second and the last band.
- Invert list [boolean]
Wether to invert the list of bands. E.g. 1, 2, -1 will selecting all bands but the first, the second and the last.
Default: 0
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Subset Raster Wavebands¶
Subset raster bands that best match the given wavelength.
Parameters
- Raster [raster]
- Specify input raster.
- Wavelength [raster]
- Specify input raster.
Outputs
- Output Raster [rasterDestination]
- Specify output path for raster.
Transformation¶
Fit FactorAnalysis¶
Fits a Factor Analysis.
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See FactorAnalysis for information on different parameters.
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import FactorAnalysis factorAnalysis = FactorAnalysis(n_components=3) estimator = make_pipeline(StandardScaler(), factorAnalysis)
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit FastICA¶
Fits a FastICA (Independent Component Analysis).
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See FastICA for information on different parameters.
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import FastICA fastICA = FastICA(n_components=3) estimator = make_pipeline(StandardScaler(), fastICA)
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit FeatureAgglomeration¶
Fits a Feature Agglomeration.
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See FeatureAgglomeration for information on different parameters.
Default:
from sklearn.cluster import FeatureAgglomeration estimator = FeatureAgglomeration(n_clusters=3)
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit Imputer¶
Fits an Imputer (Imputation transformer for completing missing values).
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See Imputer for information on different parameters.
Default:
from sklearn.preprocessing import Imputer estimator = Imputer()
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit KernelPCA¶
Fits a Kernel PCA (Principal Component Analysis).
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See KernelPCA for information on different parameters.
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import KernelPCA kernelPCA = KernelPCA(n_components=3, fit_inverse_transform=True) estimator = make_pipeline(StandardScaler(), kernelPCA)
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit MaxAbsScaler¶
Fits a MaxAbsScaler (scale each feature by its maximum absolute value). See also examples for different scaling methods.
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See MaxAbsScaler for information on different parameters.
Default:
from sklearn.preprocessing import MaxAbsScaler estimator = MaxAbsScaler()
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit MinMaxScaler¶
Fits a MinMaxScaler (transforms features by scaling each feature to a given range). See also examples for different scaling methods.
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See MinMaxScaler for information on different parameters.
Default:
from sklearn.preprocessing import MinMaxScaler estimator = MinMaxScaler()
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit Normalizer¶
Fits a Normalizer (normalizes samples individually to unit norm). See also examples for different scaling methods.
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See Normalizer for information on different parameters.
Default:
from sklearn.preprocessing import Normalizer estimator = Normalizer()
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit PCA¶
Fits a PCA (Principal Component Analysis).
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See PCA for information on different parameters.
Default:
from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA pca = PCA() estimator = make_pipeline(StandardScaler(), pca)
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit QuantileTransformer¶
Fits a Quantile Transformer (transforms features using quantiles information). See also examples for different scaling methods
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See quantile_transform for information on different parameters.
Default:
from sklearn.preprocessing import QuantileTransformer estimator = QuantileTransformer()
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit RobustScaler¶
Fits a Robust Scaler (scales features using statistics that are robust to outliers). Click here for example. See also examples for different scaling methods.
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See RobustScaler for information on different parameters.
Default:
from sklearn.preprocessing import RobustScaler estimator = RobustScaler()
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
Fit StandardScaler¶
Fits a Standard Scaler (standardizes features by removing the mean and scaling to unit variance). See also examples for different scaling methods.
See the following Cookbook Recipes on how to use transformers: Transformation
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Code [string]
Scikit-learn python code. See StandardScaler for information on different parameters.
Default:
from sklearn.preprocessing import StandardScaler estimator = StandardScaler()
Outputs
- Output Transformer [fileDestination]
Specifiy output path for the transformer (.pkl). This file can be used for applying the transformer to an image using ‘Transformation -> Transform Raster’ and ‘Transformation -> InverseTransform Raster’.
Default: outEstimator.pkl
InverseTransform Raster¶
Performs an inverse transformation on an previously transformed raster (i.e. output of ‘Transformation -> Transform Raster’). Works only for transformers that have an ‘inverse_transform(X)’ method. See scikit-learn documentations.
Parameters
- Raster [raster]
- Specify input raster.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Transformer [file]
- Select path to a transformer file (.pkl).
Outputs
- Inverse Transformation [rasterDestination]
- Specify output path for raster.
Transform Raster¶
Applies a transformer to an raster.
Used in the Cookbook Recipes: Transformation
Parameters
- Raster [raster]
- Select raster file which should be regressed.
- Mask [layer]
Specified vector or raster is interpreted as a boolean mask.
In case of a vector, all pixels covered by features are interpreted as True, all other pixels as False.
In case of a raster, all pixels that are equal to the no data value (default is 0) are interpreted as False, all other pixels as True.Multiband rasters are first evaluated band wise. The final mask for a given pixel is True, if all band wise masks for that pixel are True.
- Transformer [file]
- Select path to a transformer file (.pkl).
Outputs
- Transformation [rasterDestination]
- Specify output path for raster.